|
|
Basic information |
|
Effect of Compressive Residual Stress on Film Formed by Mechanochemical Multifunction Cavitation Processing
Masataka ljiri, Fumihiro Kato, Daisaku Maeda, Daichi Shimonishi, Toshihiko Yoshimura
Recently, mechanochemical multifunction cavitation (MC-MFC) was developed to improve the corrosion resistance of the magnesium surface. MFC is a technology that combines water jet peening and ultrasound cavitation. MC-MFC is a technology that adds phosphoric acid to water. It can improve the corrosion resistance by forming a phosphate film on the Mg surface. Conventional anodic oxidation, plating, and chemical vapor deposition can improve corrosion resistance by forming a film on the Mg surface, but it is difficult to improve characteristics such as compressive residual stress on the surface. MFC-treated surfaces have previously imparted various properties such as imparting compressive residual stress necessary to improve the fatigue strength to Al alloys and Cr-Mo steels. In this study, the effect of film formed on MC-MFC processed surface on compressive residual stress was investigated.
|